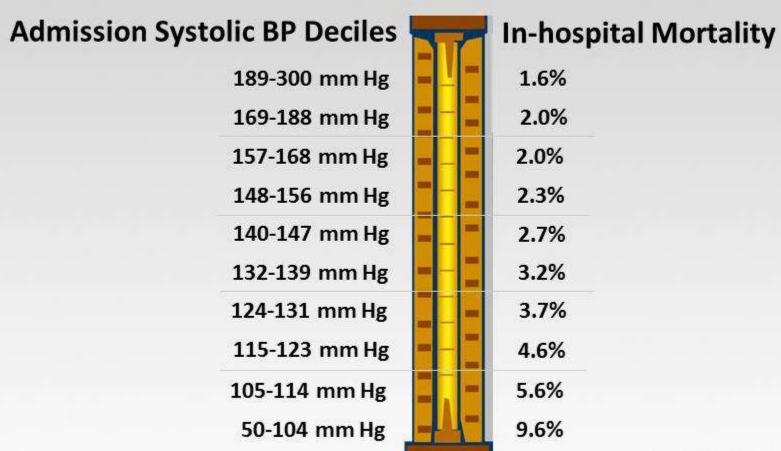

պրոֆ. Յ.Ս. Սիսակյան Յերացի թիվ 1 համալսարանական հիվանդանոց, ԵՊԲՅ


Սուր սրտային անբավարարություն.ուղեցույցային և պերսոնիզացված բուժում

Clinical classification of acute heart failure. Modified from reference 205.

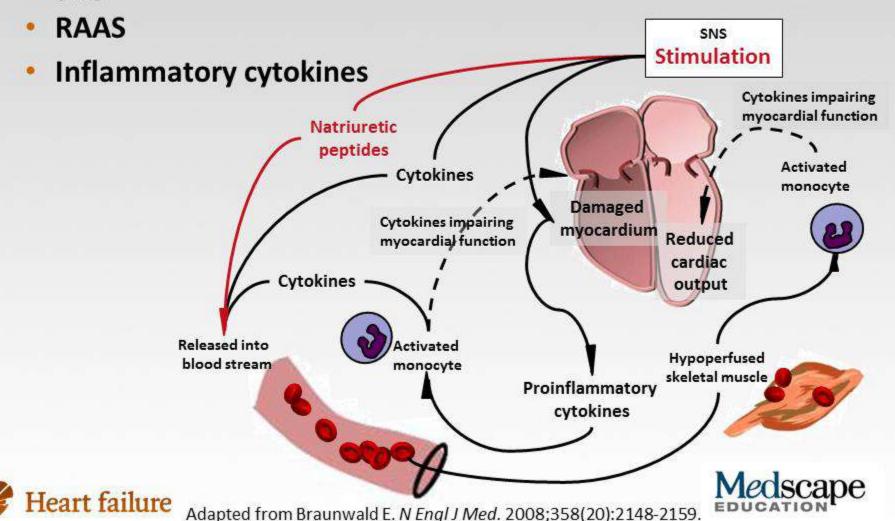
All-Cause Death or HF Hospitalization (1892 patients with AHF; 3226 patients with CHF)



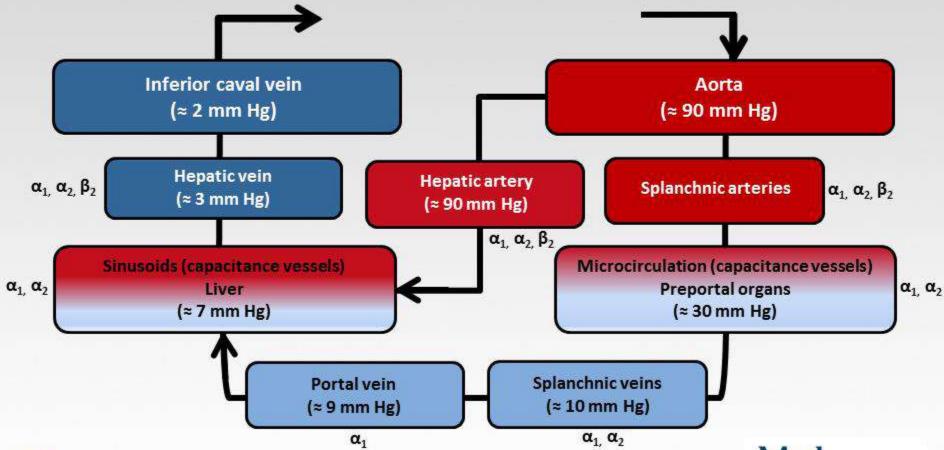
Six Clinical Scenario of Admission: AHFS

- CS1: dyspnoea and/or other signs of congestion + elevated SBP (> 150 mmHg)
- CS2: dyspnoea and/or other signs of congestion + normal SBP (110-150 mmHg)
- CS3: dyspnoea and/or other signs of congestion + low SBP (< 110 mmHg)
- CS4: Signs of ACS + dyspnoea
- CS5: Isolated RVF
- CS6: AHF without dyspnoea

Systolic BP in AHF: Higher Is Better?


N=48,567

Neurohormonal and Inflammatory Mechanisms


All neurohormonal axes activated in AHF

SNS

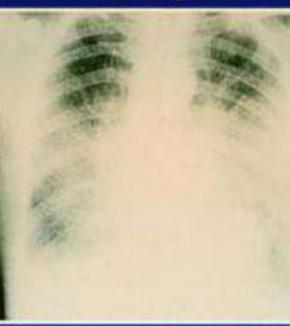
Resting Blood Volume Distribution

- 25% of normal blood volume in splanchnic vasculature
- Under SNS control and can be recruited rapidly (in seconds) to effective circulatory volume

Medscape

CS1: dyspnoea and/or Other Signs of Congestion + Elevated SBP (> 150 mmHg)

Acute pulmonary oedema


•

- dyspnoea develops abruptly
- Diffuse pulmonary oedema
- Minimal systemic oedema

It is a vascular illness

+ Warning!
Patient is very often
euvolemic
or hypovolemic

always

Acute /decompensated heart failure

High jugular venous pressure

Pulmonary congestion/oedema (high or low BP) Haemodynamic findings:

- Low cardiac output (CI < 2.5 L/m²)
- High PCWP (>16 mmHg)
- High systemic vascular resistance
- Low BP → shock (oliguria, MOF)

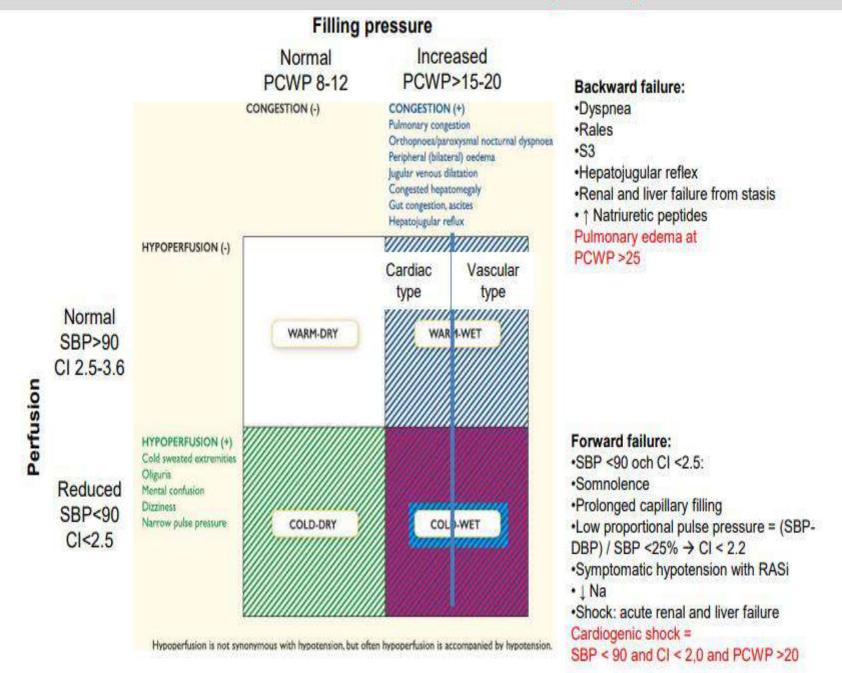
CS2: dyspnoea + SBP 110 – 150 mmHg

Decompensated chronic heart failure

dyspnoea develops gradually

- Gradual increase in body weight
- Systemic oedema
- Minimal pulmonary oedema

It is a systemic illness:


- Possible Renal dysfunction
- anaemia
- Low albumin
- Increased Pulmonary Congestion
- Systemic Congestion

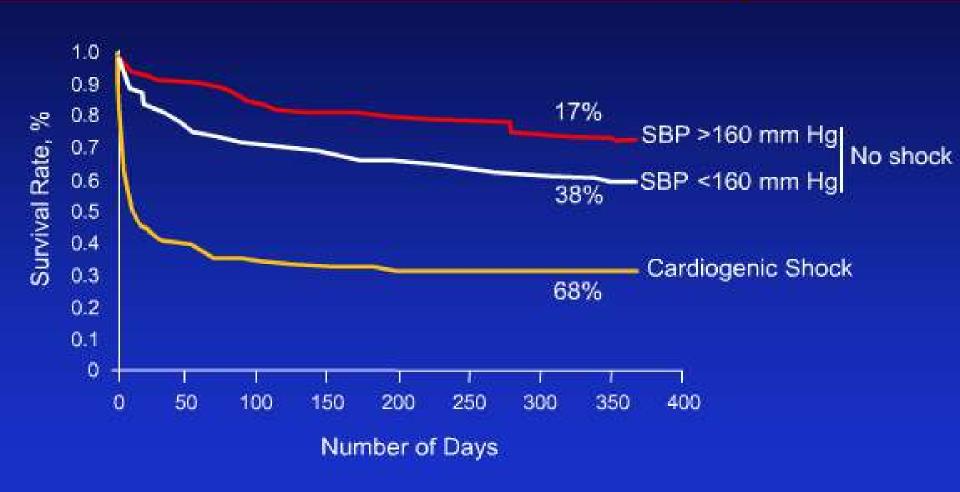
or:

Most useful classification tool: hemodynamic profiles

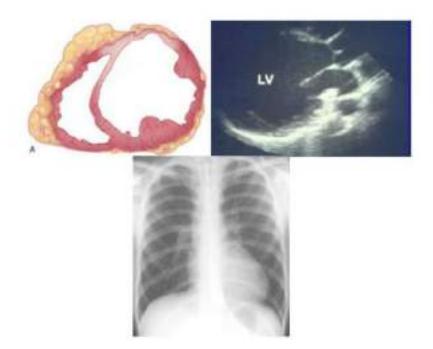
Initial Phase in ED/ICU/CCU: Profiling and Strategizing Care

Hemodynamic Profiles: Therapeutic Implications

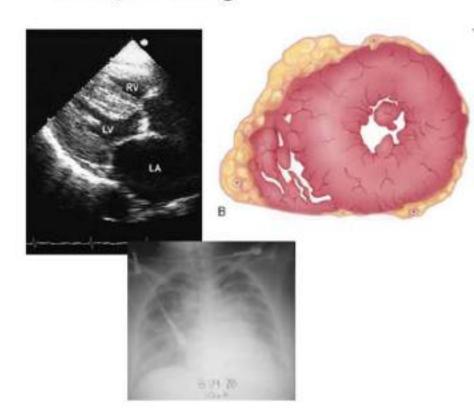
Patients with hypotension, hypoperfusion, or shock


"Warm-up" & "dry-out" Warm & Wet Warm & Dry Inotropes Dobutamine Dopamine Cold & Dry Cold & Wet Levosimendan Nitroprusside

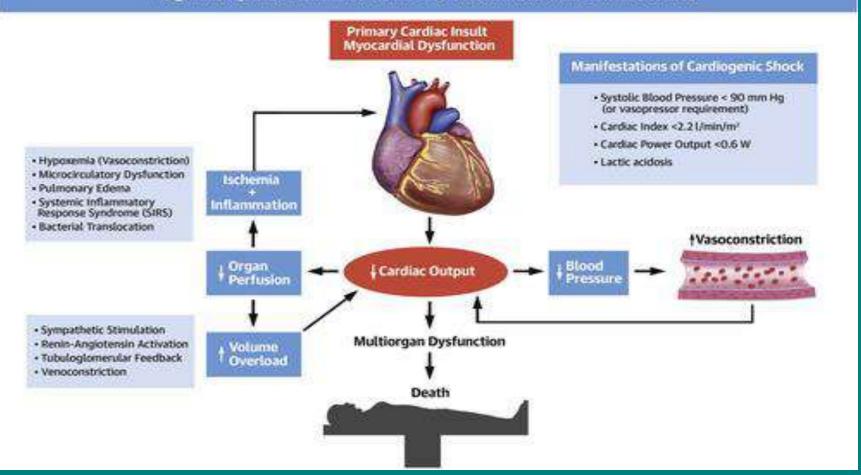
EFICA Study Predictive Factors of Mortality



	DURING ACUTE	
	PULMONARY	AFTER
VARIABLE	EDEMA	TREATMENT
	mean	±SD
Blood pressure (mm Hg)		
Systolic	200±26	139±17*
Diastolic	100±25	64±15*
Heart rate (beats/min)	83±14	72±12*
Mitral flow velocity (cm/sec)		
E wave	98±33	98±28
A wave	88±33	78±26*
E wave: A wave	1.31 ± 0.80	1.51±0.97
E-wave deceleration time (msec)	174±62	194±62*
Isovolumic relaxation time (msec)	78±19	75±25
Left ventricular volume (ml)		
End diastolic	109±43	117±50
End systolic	58±32	61±37
Left ventricular ejection fraction	0.50 ± 0.15	0.50 ± 0.13
Lett ventricular wall thickness (mm)	W. C. C. C. C. C. C. C.	DOMESTIC AND LOCATED
Posterior	12.8±2.9	12.8±3.1
Septal	12.5 ± 3.7	12.9±3.6
Left ventricular dimension (mm)		
End diastolic	49.7±9.5	49.4±9.8
End systolic	38.3 ± 10.1	38.3±10.7

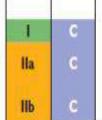

^{*}P<0.05 for the comparison with the value during the acute episode.

A Fundamental Issue: Are These Patients the Same or Different?


- 60-year-old man with long history of chronic HF
- 3 weeks of gradually worsening symptoms
- BP 85/40 mmHg

- 80-year-old woman with long history of hypertension
- 1 hour of sudden onset of symptoms
- BP 185/120 mmHg

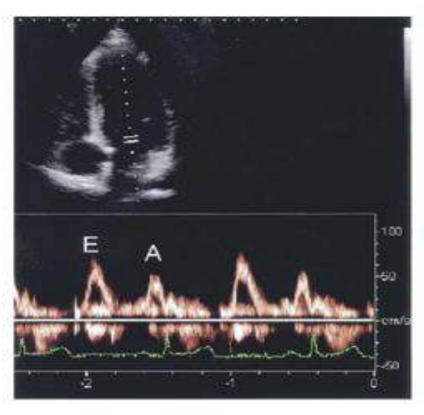
Cardiogenic Shock Progressive Cycles of Inflammation, Ischemia, Vasoconstriction, and Volume Overload

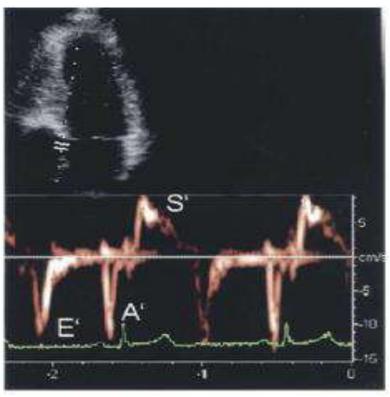

PA (Swan-Ganz) catheter? -- ESC Guidelines

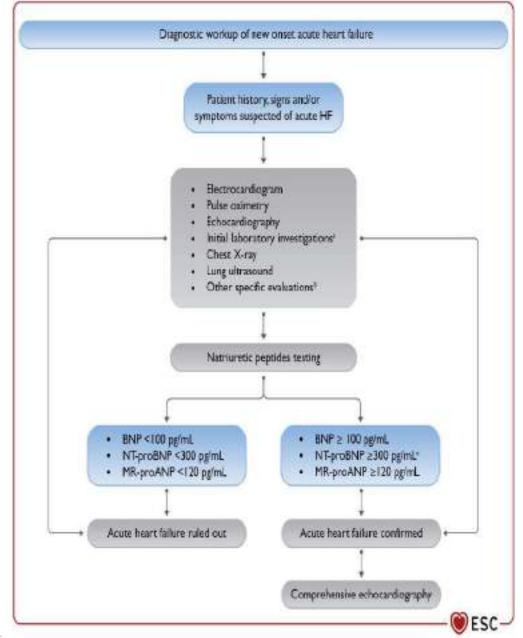
Right heart catheterization with a pulmonary artery catheter:

- is recommended in patients with severe HF being evaluated for heart transplantation or mechanical circulatory support;
- should be considered in patients with probable pulmonary hypertension assessed by echocardiography in order to confirm pulmonary hypertension and its reversibility before the correction of valve/structural heart disease;
- may be considered in order to adjust therapy in patients with HF who remain severely symptomatic despite initial standard therapies and whose haemodynamic status is unclear.

Routine invasive haemodynamic evaluation with a pulmonary artery catheter is not indicated for the diagnosis of AHF. It may be helpful in selected cases of haemodynamically unstable patients with an unknown mechanism of deterioration. Also, routine use of an arterial line or central venous line for diagnostic purposes is not indicated.


There is no agreement on the optimal method of haemodynamic monitoring in assessing and treating patients in cardiogenic shock, including pulmonary artery catheterization.




Recommendations regarding monitoring of clinical status of patients hospitalized due to acute heart failure

Recommendations	Class ^a	Level
Standard non-invasive monitoring of heart rate, rhythm, respiratory rate, oxygen saturation and blood pressure is recommended.	1	6
It is recommended that patients should be weighed daily and have an accurate fluid balance chart completed.	I)	e
It is recommended to evaluate signs and symptoms relevant to HF (e.g. dyspnoea, pulmonary rales, peripheral oedema, weight) daily to assess correction of fluid overload.	ı	C
Frequent, often daily,measurement of renal function (blood urea, creatinine) and electrolytes (potassium, sodium) during i.v. therapy and when renin-angiotensin- aldosterone system antagonists are initiated is recommended.	Ĕ	C
Intra-arterial line should be considered in patients with hypotension and persistent symptoms despite treatment.	lla	0
Pulmonary artery catheter may be considered in patients who, despite pharmacological treatment present refractory symptoms (particularly with hypotension and hypoperfusion).	Шь	C

Monitoring: biomarkers or pulmonary artery catheter?

Diagnostic work up of new onset acute heart failure

ACS = acute coronary syndrome; BNP = B-type natriuretic peptide; CT = computed tomography; HF = heart failure; MR-proANP=mid-regional pro-atrial natriuretic peptide; NT-proBNP = N-terminal pro-B-type natriuretic peptide; TSH = thyroid-stimulating hormone.

^aInitial laboratory exams include troponin, serum creatinine, electrolytes, blood urea nitrogen or urea, TSH, liver function tests as well as D-dimer and procalcitonin when pulmonary embolism or infection are suspected, arterial blood gas analysis in case of respiratory distress, and lactate in case of hypoperfusion. ^bSpecific evaluation includes coronary angiography, in case of suspected ACS, and CT in case of suspected pulmonary embolism.

cRule-in values for the diagnosis of acute HF: >450 pg/mL if aged <55 years, >900 pg/mL if aged between 55 and 75 years and >1800 pg/mL if aged >75 years

Diagnostic tests in patients with acute heart failure (1)

Exam	Time of measurement	Possible findings	Diagnostic value for AHF	Indication
ECG	Admission, during hospitalization, ⁴⁵ pre-discharge	Arrhythmias, myocardial ischaemia	None	Recommended
Chest-X ray	Admission, during hospitalization*	Congestion, lung infection	Confirmatory	May be considered
LUS	Admission, during hospitalization* pre-discharge	Congestion	Confirmatory	May be considered
Echocardiography	Admission, during hospitalization,* pre-discharge	Congestion, cardiac function, mechanical causes	Major	Recommended
Natriuretic peptides (BNP, NT-proBNP, MR-proANP)	Admission, pre-discharge	Congestion	High negative predictive value	Should be considered
Serum troponin	Admission	Myocardial injury	Exclusion of ACS	Recommended
Serum creatinine	Admission, during hospitalization,* pre-discharge	Renal function	None	Recommended for prognostic assessment

ACS = acute coronary syndrome; AHF = acute heart failure; BNP = B-type natriuretic peptide; ECG = electrocardiogram; LUS = lung ultrasound; MR-proANP = mid-regional pro-atrial natriuretic peptide; NT-proBNP = N-terminal pro-B-type natriuretic peptide; TSH = thyroid-stimulating hormone.

^aBased on clinical conditions.

^bContinuous ECG monitoring can be considered based on clinical conditions.

()

Diagnostic tests in patients with acute heart failure (2)

Exam	Time of measurement	Possible findings	Diagnostic value for AHF	Indication
Serum electrolytes (sodium, potassium, chloride)	Admission, during hospitalization,* pre-discharge	Electrolyte abnormalities	None	Recommended for prognostic assessment and treatment
Iron status (transferrin, ferritin)	Pre-discharge	Iron status	None	Recommended for prognostic assessment and treatment
TSH	Admission	Hypo-hyperthyroidism	None	Recommended for treatment
D-dimer	Admission	Pulmonary embolism	Excludes pulmonary embolism	Recommended when pulmonary embolism is suspected
Pro-calcitonin	Admission	Pneumonia	Useful for diagnoss of pneumonia	May be done when pneumonia is suspected
Lactate	Admission, during hospitalization*	Lactic acidosis	Useful to assess perfusion status	Recommended when peripheral hypoperfusion is suspected
Pulse oximetry and arterial blood gas analysis	Admission, during hospitalization ^a	Respiratory failure	Useful to assess respiratory function	Recommended when respiratory failure is suspected

ACS = acute coronary syndrome; AHF = acute heart failure; BNP = B-type natriuretic peptide; ECG = electrocardiogram; LUS = lung ultrasound; MR-proANP = mid-regional pro-atrial natriuretic peptide; NT-proBNP = N-terminal pro-B-type natriuretic peptide; TSH = thyroid-stimulating hormone. ^aBased on clinical conditions. ^bContinuous ECG monitoring can be considered based on clinical conditions.

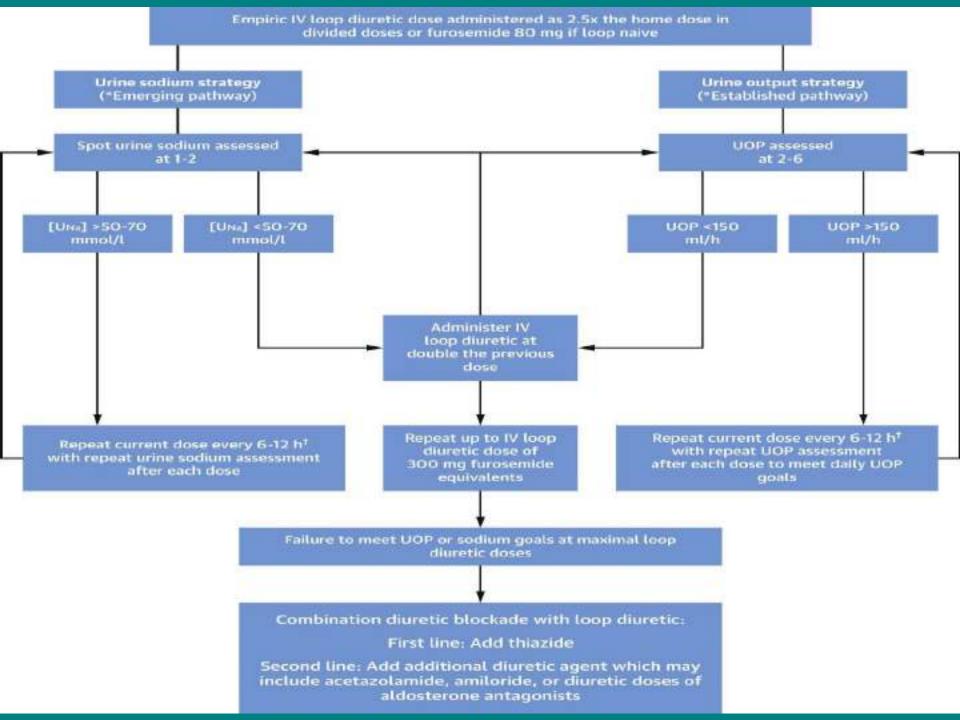
Management of pistents with soutply decomponented heart taken Congestion Fluid overload **Hypopertission** Loop curescs (Classi) Loop duretor and consider (Class I) instrupes (Class III) Hypopertision and Congestum refet congestion relief increase duretic deces Consider valorations are (Class f) and/or combine (i.e. roreprephrine) duretes (Class lb) (Class 85) Medical therapy optimization Diarette resistance or Persistent repoperfusion end-stage renal failure. Organ durrage Seed replacement MOS therapy Cha. (ii) (Class lin) OR: SOURCE Recci replacement Consider therapy. gallarye care. (Chu la) CR Consider. райзоне сам @ESC-

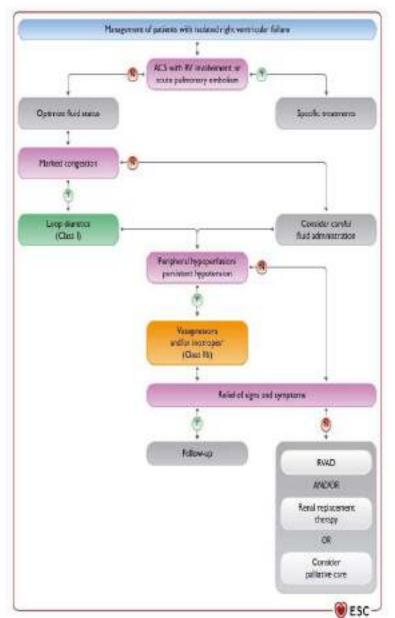
Management of acute decompensated heart failure

MCS=mechanical circulatory support.

^aAdequate diuretic doses to relieve congestion and close monitoring of diuresis is recommended (see Figure13) regardless of perfusion status.

OFSC

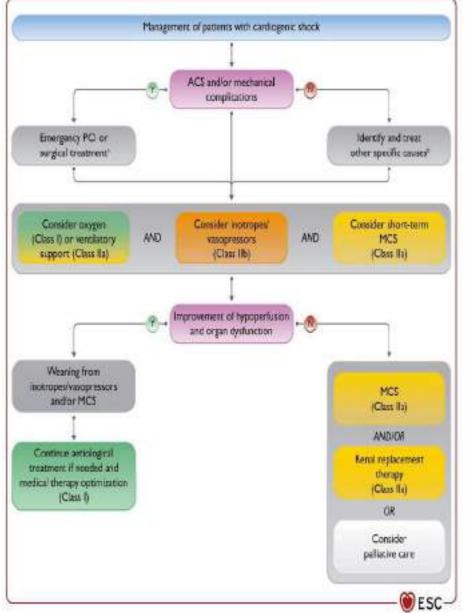



Management of patients with pulmonary dedema Oxygen (Class I) or ventilatory support (Class Ha) 58P ≥110 mmHg Signs of hypoperfusion Loop clureses (Class I) Loop dureucs (Class I) Loop duresics and/or vasad/beters and inotropie/vacopressors. (Class I) (Chus 8b) (Class 16) Congestion relief Medical thoragy optimization Consider RRILMCS. (Class I) other devices (Classific) Consider poliative care

Management of pulmonary oedema

MCS=mechanical circulatory support; RRT= renal replacement therapy; SBP=systolic blood pressure.

ESC



Management of right ventricular failure

ACS=acute coronary syndrome; RV=right ventricular; RVAD=right ventricular assist device. alnotropes alone in case of hypoperfusion without hypotension.

Management of cardiogenic shock

ACS = acute coronary syndrome; BTT = bridge to transplantation; MCS = mechanical circulatory support; PCI = percutaneous coronary intervention.

^aPCI in ACS, pericardiocentesis in tamponade, mitral valve surgery in papillary muscle rupture. In case of interventricular septum rupture, MCS as BTT should be considered.

^bOther causes include acute valve regurgitation, pulmonary embolism, infection, acute myocarditis, arrhythmia.

Recommendations for the initial treatment of acute heart failure (1)

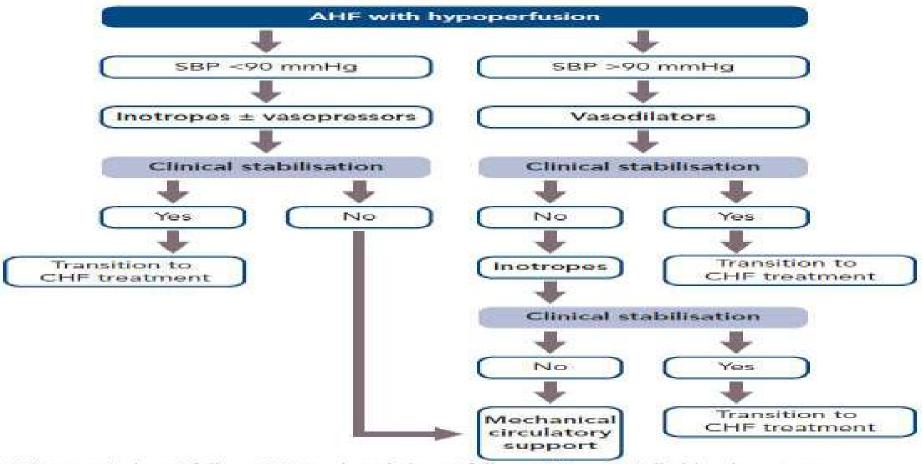
Recommendations	Class	Level
Oxygen and ventilatory support		
Oxygen is recommended in patients with $SpO_2 < 90\%$ or $PaO_2 < 60$ mmHg to correct hypoxaemia.	I	C
Intubation is recommended for progressive respiratory failure persisting in spite of oxygen administration or non-invasive ventilation.	1	С
Non-invasive positive pressure ventilation should be considered in patients with respiratory distress (respiratory rate >25 breaths/min, SpO_2 <90%) and started as soon as possible in order to decrease respiratory distress and reduce the rate of mechanical endotracheal intubation.	lla	В

 PaO_2 = partial pressure of oxygen; SpO_2 =transcutaneous oxygen saturation.

Recommendations for the initial treatment of acute heart failure (2)

Recommendations	Class	Level
Diuretics		
Intravenous loop diuretics are recommended for all patients with AHF admitted with signs/symptoms of fluid overload to improve symptoms.	1	С
Combination of a loop diuretic with thiazidetype diuretic should be considered in patients with resistant oedema who do not respond to an increase in loop diuretic doses.	lla	В
Vasodilators		
In patients with AHF and SBP >110 mmHg, i.v. vasodilators may be considered as initial therapy to improve symptoms and reducecongestion.	IIb	В

AHF = acute heart failure; i.v. = intravenous; SBP = systolic blood pressure.



Administration of positive inotropic agents

	Class/level	Bolus	Infusion rate
Dobutamine	II a, c	No	2 to 20 μg/kg/min (β+)
Dopamine	II a, c II b, c	No	<3 μ g/kg/min: renal effect (δ +) 3-5 μ g/kg/min: inotropic (β +)
WILLIAMS CO.	4440000		$>5 \mu g/kg/min$: ($\beta+$), vasopressor ($\alpha+$)
Milrinone	ll b, c	25-75 μg/kg/min over 10-20 min	0.375-0.75 µg/kg/min
Enoximone	IIb, c	0.25-0.75 μg/kg	1.25-7.5 µg/kg/min
Levosimenda	n II a, b	12 μg/kg/min* over 10 min	 μg/kg/min which can be decreased to 0.05 or increased to 2 μg/kg/min
Norepinephr	ine	No bolus	0.2-1.0 μg/kg/min
Epinephrine	77.53	Bolus: 1 mg can be given i.v. at resuscitation, may be repeated after 3-5 min, endotracheal route is not	0.05-0.5 μg/kg/min
		favoured	

[&]quot;Current recommended dosing, in patients with hypotension, therapy should be started without a bolus.

Figure 1: Practical Recommendations on the Use of Inotropes in Patients with Acute Heart Failure and Hypoperfusion

AHF = acute heart failure; CHF = chronic heart failure; SBP = systolic blood pressure.

Recommendations for the initial treatment of acute heart failure (3)

Recommendations	Class	Level
Other drugs		
Thromboembolism prophylaxis (e.g. with LMWH) is recommended in patients not		
already anticoagulated and with no contraindication to anticoagulation, to reduce	1	Α
the risk of deep venous thrombosis and pulmonary embolism.		
Routine use of opiates is not recommended, unless in selected patients with	Ш	•
severe/intractable pain or anxiety.	111	

LMWH= low-molecular-weight heparin.

Recommendations for the use of short-term mechanical circulatory support in patients with cardiogenic shock

Recommendations	Class	Level
Short-term MCS should be considered in patients with cardiogenic shock as a BTR,		
BTD, BTB. Further indications include treatment of the cause of cardiogenic shock	lla	C
or long-term MCS or transplantation.		
IABP may be considered in patients with cardiogenic shock as a BTR, BTD, BTB,		
including treatment of the cause of cardiogenic shock (i.e.	IIb	C
mechanical complication of acute MI) or longterm MCS or transplantation.		
IABP is not routinely recommended in post-MI cardiogenic shock.	III	В

BTB = bridge to bridge; BTD = bridge to decision; BTR = bridge to recovery; IABP = intra-aortic balloon pump; MCS = mechanical circulatory support; MI = myocardial infarction.

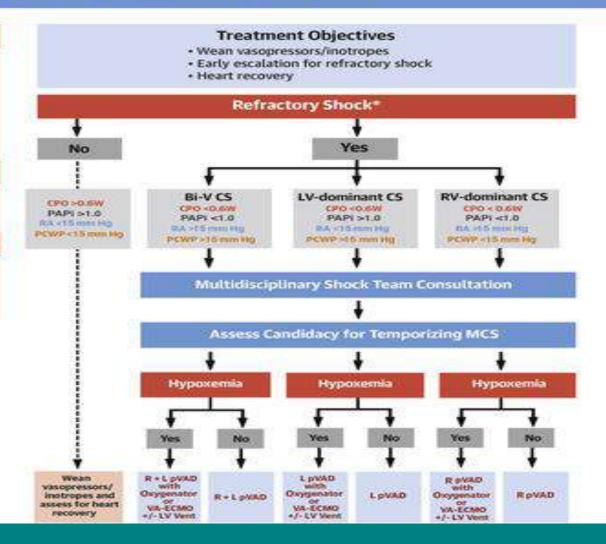
CICU Management of Cardiogenic Shock

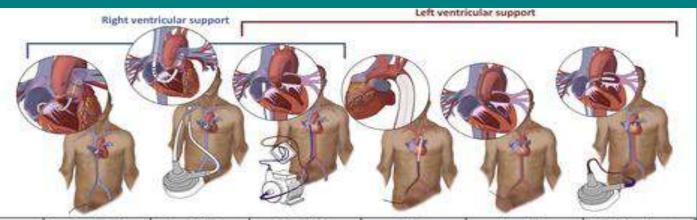
Serial Assessment

- Lactate
- Fick + thermodilution CO/CI
- CPO and PAPi

and if MCS

- Serial echocardiograms
- · Assess for hemolysis
- · Neurovascular assessments


*Criteria for Refractory Shock


- CPO < 0.6W
- CI <2.21/min/m¹
- f Lactate

Contraindications To MCS

- Anoxic brain injury
- Irreversible end organ failure
- Prohibitive vascular access
- DNR

CPO = MAP x CO/451 PAPi = (sPAP-dPAP)/RA

	Impella RP	TandemHeart RA-PA	VA-ECMO	IABP	Impella (2.5, CP, 5.0, 5.5)	TandemHeart LA-FA
Flow	max 4.0 t/min	max 4.0 t/min	max 7.0 (/min	0.5 lýmin	2.5 - 5.5 (/min	max 4.0 V/min
Pump Speed	33000 rpm	max 7500 rpm	max 5000 rpm	NA NA	max 51,000 rpm	max 7500 rpm
Mechanism	Axial flow continuous pump (RA-to-PA)	Centrifugal flow continuous pump (RA-to-PA)	Centrifugal flow continuous pump (RA-to-AD)	Balloon Inflation deflation (AO)	Axial flow continuous pump (IX-to-AO)	Centrifugal flow continuous pump (LA-to-AO)
Cannula Size	22 F venous	29 F venous	14-19 F arterial 17-21 F venous	7-8 F arterial	13-21 F arterial	12-19 F arterial 21 F venous
Insertion/Placement	Femoral vein	Internal jugular wein	Femoral vein Femoral artery	Femoral artery Axillary artery	Femoral artery Axillary artery	Femoral artery Femoral vein
LV Unloading	2 2	3725	72-	+	+*+++	++
RV Unloading	*		++			
Cardiac Power		10 % (1	11	1	11	11
Afterload		13 6 3	11		- 11	
Coronary Perfusion	2	(920)	020	•	1	
Considerations	RECOVER RIGHT: 73% survival-to-30 days in RWF post EVAD, AMT or cordiotomy May 2019 - FDA post- approval study: 33% survival-to-30 days	U access may facilitate early ambulation	Bi-V + arygenation support for CS following: ANI, ADNF or cordiac arrest Cardiotomy Myocorditis Allograft rejection	Requires stable conding rhythm and native heart function May consider in select cases of post-AMI mechanical complications	Anne 2008 – FDA 510(k) opproval for HR-PCI April 2016: Expanded Indication for CS Contraindicated with mechanical aortic volve, IV thrombus	Requires transseptol occess Oxygenator may be added to the circuit

Trends in MCS Use and Hospital Mortality

- Patients with AMI and non-infarction-related cardiogenic shock
 - 144,254 cases of cardiogenic shock
 - 55.4% of cases were associated with an AMI
- Patients with CS complicating AMI had lower hospital mortality vs non-AMI related CS
 - (45% vs 48.2%; P < .001)

IABP use

- Overall decline
- 29.8% to 17.7%*

IMP use

- Uptrend in use
- 0.1% to 2.6%*

ECMO use

- Uptrend in use
- 0.3% to 1.8%*

^{*}ptrend < 0.01 Shah M, et al. Clin Res Cardiol. 2018;107:287-303.

IABP-SHOCK II Trial

Largest randomized trial in patients with AMI cardiogenic shock

- Summary of findings: Use of IABP did not significantly reduce 30-day mortality in patients with AMI-CS*
- At 30 days, 119 patients in IABP group (39.7%) and 123 patients in control group (41.3%) had died[†]
- No randomized controlled trials in acute on chronic heart failure complicated by shock
 - Data can't be extrapolated to these patients and close monitoring is needed

^{*}For whom an early revascularization strategy was planned. †Relative risk with IABP, 0.96;95% CI, 0.79 to 1.17;P=0.69.

Clinical Considerations for Device Selection Short-Term MCS

Comparison of Commercially Available Devices for Short-Term MCS

	VA-ECMO	IABP	Tandem Heart	Impella (2.5; CP; 5; RP)	
Flow, L/min	4-6	0.5-1	4-6	2.5-5	
Duration of support, FDA approved	6 h (limited by oxygenator durability)	9 d	21 d	4 d (2.5, CP) 6 d (5) 14 d (RP)	
Ventricles supported	LV and RV	LV	LV or RV	LV or RV	
Cannula size, F	Inflow 18-21 Outflow 15-22	7-9	Inflow 21 Outflow 15-17	12-21	
Additional requirements	Potential need for LV venting, possible cutdown		Transseptal puncture	Surgical cutdown for Impelia :	
Advantages	Highest cardiac output Complete cardiopulmonary support (including oxygenation and CO ₂ removal)	Easy to place Good safety profile Fewer side effects, especially vascular	Highest cardiac output, comparable with VA- ECMO, and no LV distension	Multiple devices to choose fro	
Disadvantages	Requires more resources and support staff than other devices Retrograde blood flow with worsening of afterload (LV distension) Vascular complications Thrombocytopenia	Limited hemodynamic support Contraindicated in severe aortic regurgitation	Need tertiary or quaternary specialized care center Necessitates atrial transseptal puncture with its potential complications Vascular complications Retrograde blood flow	More invasive and complex to implant than the IABP Unstable position frequent hemolysis Vascular complications	

Guglin, et al. J Am Coll Card. 2019:698-716.

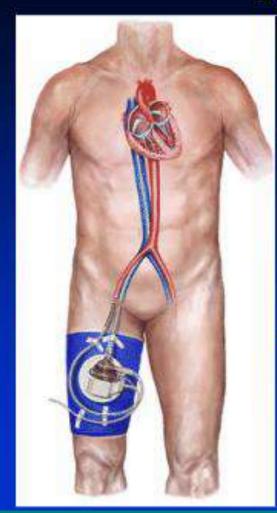
Recommendation for IABP Use US vs European Guidelines

2013 ACCF/AHA Management of Cardiogenic Shock^[a]

Class IIa Recommendation

The use of intra-aortic balloon pump counterpulsation can be useful for patients with cardiogenic shock after STEMI who do not quickly stabilize with pharmacological therapy

ESC 2017 Management of Cardiogenic Shock^[b]


- Class III Recommendation

 Routine intra-aortic balloon pumping is not indicated.
 - Intra-aortic balloon pumping should be considered in patients with hemodynamic instability/cardiogenic shock due to mechanical complications

a. O'Gara et al, Circulation.2013;127:e362-e425.
 b. Ibanez et al, Eur Heart J, 2018.39:119-177.

Device Therapy for AHF: mechanical support, ultrafiltration & electrical therapy

TandemHeart™

By courtesy of P. Mohacsi

- Continuous-flow up to 4L/min
- Short-term circulatory support
- Transeptal and arterial cannulas

Recommendations for pre-discharge and early post-discharge follow-up of patients hospitalized for acute heart failure

Recommendations	Class	Level
It is recommended that patients hospitalized for HF be carefully evaluated to exclude persistent signs of congestion before discharge and to optimize oral treatment	1	С
It is recommended that evidence-based oral medical treatment be administered before discharge.	ı	C
An early follow-up visit is recommended at 1-2 weeks after discharge to assess signs of congestion, drug tolerance and start and/or uptitrate evidence-based therapy.	1	С
Ferric carboxymaltose should be considered for iron deficiency, defined as serum ferritin <100 ng/mL or serum ferritin 100–299 ng/mL with TSAT <20%, to improve symptoms and reduce rehospitalizations.	lla	В

HR = heart failure; TSAT = transferrin saturation.

Oral Diuretic Rx

Switching from IV-oral loop diuretic

- Stable weight
 - At least 48 hours prior to discharge
 - Absence of signs of fluid retention
- Stable renal function

Management Adherence issues

Fluid restriction (1.5 l/day)

- Na restriction<100mmols/day</p>
- ? NSAIDs
 - interfere with PG synthesis by inhibiting cyclooxygenase and thereby antagonise the natriuretic response to loop diuretics

ESC-HF Registry described admission and discharge profiles - 40% still wet!

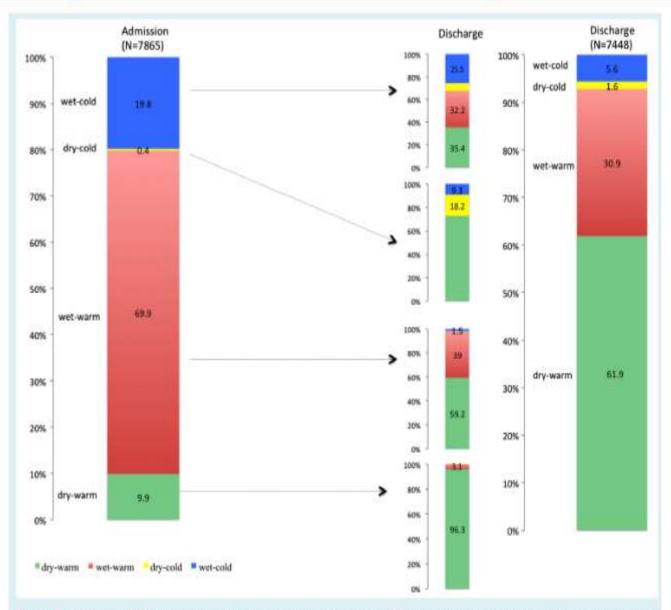


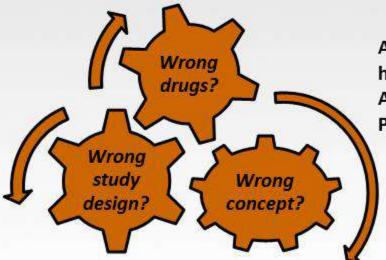
Figure 1 Classification based on congestion/hypoperfusion status assessed by clinical examination performed at admission and discharge.

Classification at discharge was used in 7448 patients discharged alive.

ESC-HF Registry Chinocel EJHF 2019

Several Drugs in ADHF Not Successful

PDE inhibitors: milrinone: OPTIME-CHF^[1]


Endothelin antagonists: tezosentan: VERITAS[2]

Calcium sensitizers: levosimendan; SURVIVE/REVIVE[3]

AVP antagonists: tolvaptan; EVEREST[4]

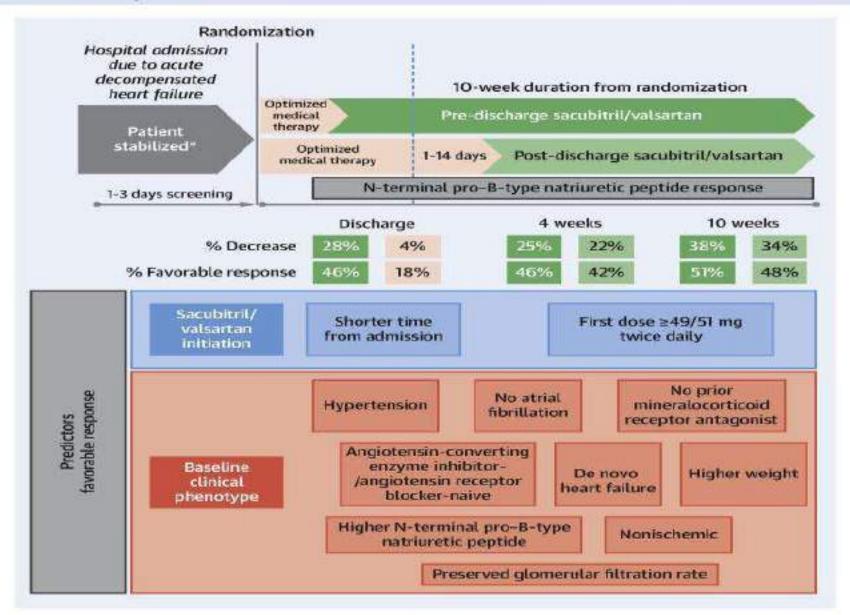
Adenosine A1-receptor antagonist: rolofylline; PROTECT[5]

Natriuretic peptides: nesiritide: ASCEND-HF^[6]

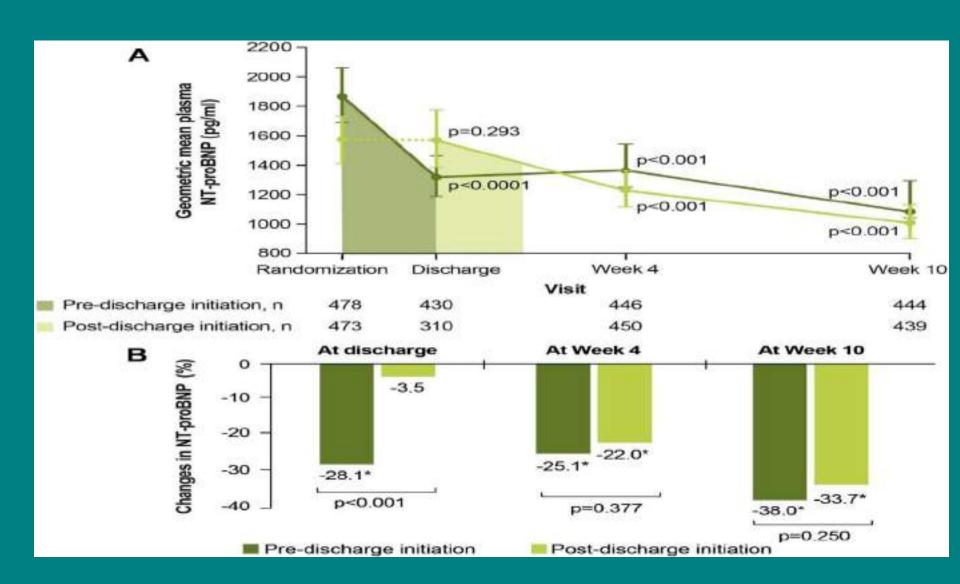
ADHF = acute decompensated heart failure;

AVP = arginine vasopressin;

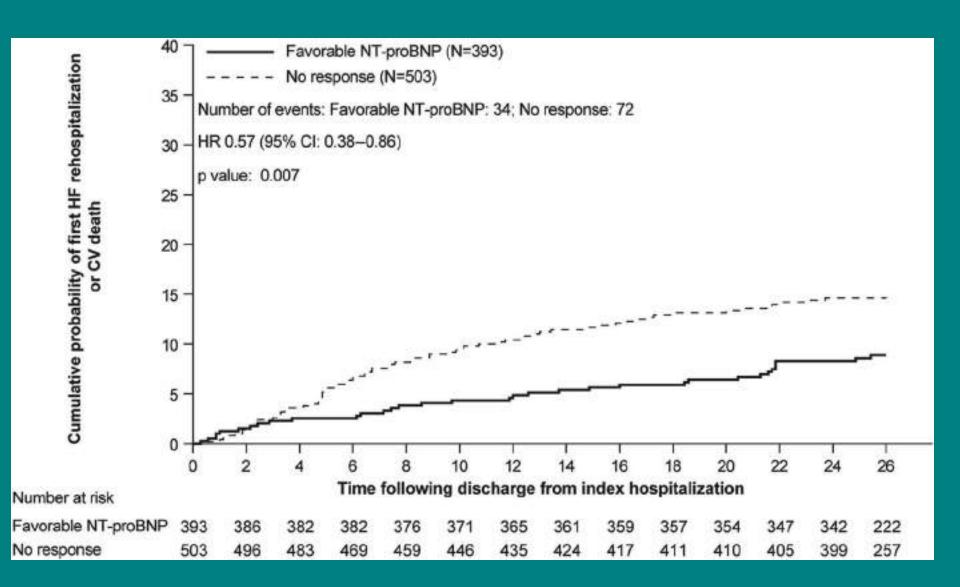
PDE = phosphodiesterase



SACUBITRIL VALSARTAN New hope?


TRANSITION PIONEER-HF

CENTRAL ILLUSTRATION: TRANSITION Study: NT-proBNP Response to Sacubitril/Valsartan and Patient Characteristics Associated With a Favorable Reduction Response



Pascual-Figal, D. et al. J Am Coll Cardiol HF. 2020;8(10):822-33.

NT-proBNP Response Following Sacubitril/Valsartan Initiation at Pre-Discharge Versus Post-Discharge

Effect of Favorable NT-proBNP Reduction Response to Sacubitril/Valsartan at Week 4 on Clinical Outcomes From Discharge Through 26 Weeks

AHF: Independent Predictors of All-Cause Death*

	HR	95% CI	P
Pulmonary/peripheral congestion at entry	2.73	1.71-4.35	<.0001
Inotropes	2.00	1.51- 2.65	<.0001
Sodium < 136 vs ≥ 136 mmol/L at entry	1.84	1.45-2.34	< .0001
EF < 40% vs ≥ 40% at entry	1.66	1.14-2.44	.009
Chronic kidney dysfunction	1.48	1.13-1.95	.004
Creatinine > 1.5 vs ≤ 1.5 mg/dL at entry	1.43	1.10-1.87	.007
Sound 3 at entry	1.37	1.05-1.80	.021
Prior HF hospitalization	1.31	1.03-1.67	.030
Age (per year)	1.03	1.02-1.04	< .0001
SBP (mm Hg) at entry	0.995	0.991-0.999	.028

*Median follow-up, 356 [325-366]

CI = confidence interval; HR = hazard ratio

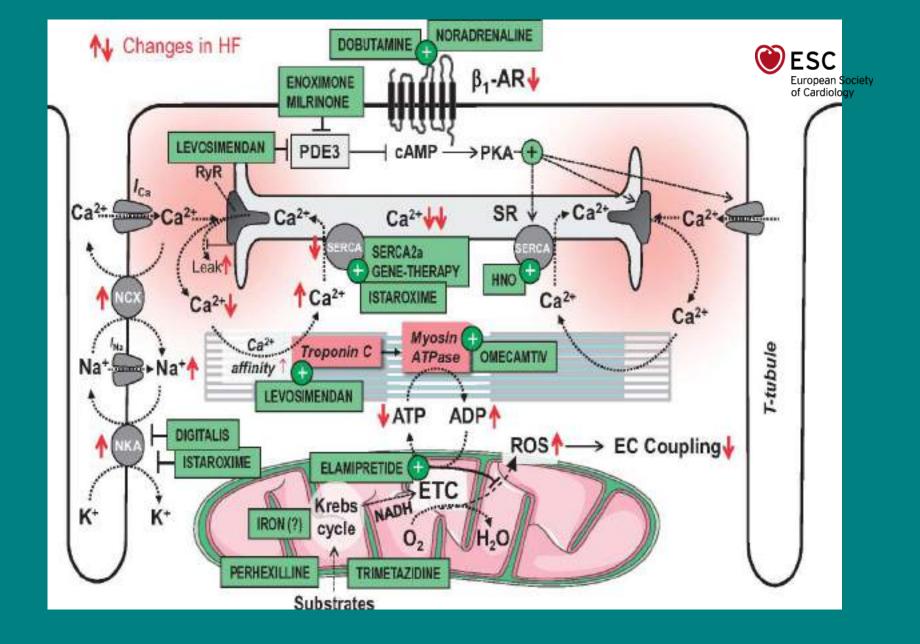
What is new (16)

Recommendations for management of patients with acute HF			
2021 HF Guidelines Class		2016 HF Guidelines	Class
Combination of a loop diuretic with		Combination of loop diuretic with either	
thiazide-type diuretic should be		thiazide-type diuretic or spironolactone	
considered in patients with resistant	lla	may be considered in patients with	IIb
oedema who do not respond to an		resistant oedema or insufficient	
increase in loop diuretic doses.		symptomatic response.	
In patients with AHF and SBP >110		In patients with hypertensive AHF, i.v.	
mmHg, i.v. vasodilators may be	IIb	vasodilators should be considered as	lla
considered as initial therapy to improve	IID	initial therapy to improve symptoms and	lla
symptoms and reduce congestion.		reduce congestion.	

What is new (17)

Recommendations for management of patients with acute HF (continued)				
2021 HF Guidelines	Class	2016 HF Guidelines	Class	
Routine use of opiates is not recommended, unless in selected patients with severe/intractable pain or anxiety.	Ш	Opiates may be considered for cautious use to relieve dyspnoea and anxiety in patients with severe dyspnoea but nausea and hypopnea may occur.	IIb	
Short-term MCS should be considered in patients with cardiogenic shock as a BTR, BTD, BTB. Further indications include treatment of the cause of cardiogenic shock or long-term MCS or transplantation.	lla	Short-term MCS may be considered in refractory cardiogenic shock depending on patient age, comorbidities, and neurological function.	IIb	

What is new (18)



Recommendations for management of patients with HF and AF			
2021 HF Guidelines Class		2016 HF Guidelines	Class
DOACs are recommended in preference to VKAs in patients with HF, except in those with moderate or severe mitral stenosis or mechanical prosthetic heart valves.	ı	For patients with HF and non-valvular AF eligible for anticoagulation based on a CHA ₂ DS ₂ -VASc score, NOACs rather than warfarin should be considered for anticoagulation as NOACs are associated with a lower risk of stroke, intracranial haemorrhage, and mortality, which outweigh the increased risk of gastrointestinal haemorrhage.	lla
Beta-blockers should be considered for short- and long- term rate control in patients with HF and AF.	lla	For patients in NYHA class I – III, a beta- blocker, usually given orally, is safe and therefore is recommended as firstline treatment to control ventricular rate, provided the patient is euvolaemic.	1

ESC

What Every Cardiologist Needs to Know in Acute HF: Take-Home Messages

- Exclude specific causes of instability
- Base treatment on the wet/dry and warm/cold clinical presentation
 - Most of the patients are wet & warm and need diuretics and vasodilators
- Treatment is now associated with unacceptable high mortality and morbidity
- New drugs are awaited

"The future will be better tomorrow "

- 1. Revascularization in ACS
- 2. New diuretics
- 3. New inotropic drugs
- 4. New devices
- ... and more

"If we don't succeed, we run the risk of failure."